Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2401035, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552161

RESUMEN

Wearable epidermic electronics assembled from conductive hydrogels are attracting various research attention for their seamless integration with human body for conformally real-time health monitoring, clinical diagnostics and medical treatment, and human-interactive sensing. Nevertheless, it remains a tremendous challenge to simultaneously achieve conformally bioadhesive epidermic electronics with remarkable self-adhesiveness, reliable ultraviolet (UV) protection ability, and admirable sensing performance for high-fidelity epidermal electrophysiological signals monitoring, along with timely photothermal therapeutic performances after medical diagnostic sensing, as well as efficient antibacterial activity and reliable hemostatic effect for potential medical therapy. Herein, a conformally bioadhesive hydrogel-based epidermic sensor, featuring superior self-adhesiveness and excellent UV-protection performance, is developed by dexterously assembling conducting MXene nanosheets network with biological hydrogel polymer network for conformally stably attaching onto human skin for high-quality recording of various epidermal electrophysiological signals with high signal-to-noise ratios (SNR) and low interfacial impedance for intelligent medical diagnosis and smart human-machine interface. Moreover, a smart sign language gesture recognition platform based on collected electromyogram (EMG) signals is designed for hassle-free communication with hearing-impaired people with the help of advanced machine learning algorithms. Meanwhile, the bioadhesive MXene hydrogel possesses reliable antibacterial capability, excellent biocompatibility, and effective hemostasis properties for promising bacterial-infected wound bleeding.

2.
Adv Sci (Weinh) ; 11(10): e2305672, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38140748

RESUMEN

Flexible electronic sensors are receiving numerous research interests for their potential in electronic skins (e-skins), wearable human-machine interfacing, and smart diagnostic healthcare sensing. However, the preparation of multifunctional flexible electronics with high sensitivity, broad sensing range, fast response, efficient healability, and reliable antibacterial capability is still a substantial challenge. Herein, bioinspired by the highly sensitive human skin microstructure (protective epidermis/spinous sensing structure/nerve conduction network), a skin bionic multifunctional electronics is prepared by face-to-face assembly of a newly prepared healable, recyclable, and antibacterial polyurethane elastomer matrix with conductive MXene nanosheets-coated microdome array after ingenious templating method as protective epidermis layer/sensing layer, and an interdigitated electrode as signal transmission layer. The polyurethane elastomer matrix functionalized with triple dynamic bonds (reversible hydrogen bonds, oxime carbamate bonds, and copper (II) ion coordination bonds) is newly prepared, demonstrating excellent healability with highly healing efficiency, robust recyclability, and reliable antibacterial capability, as well as good biocompatibility. Benefiting from the superior mechanical performance of the polyurethane elastomer matrix and the unique skin bionic microstructure of the sensor, the as-assembled flexible electronics exhibit admirable sensing performances featuring ultrahigh sensitivity (up to 1573.05 kPa-1 ), broad sensing range (up to 325 kPa), good reproducibility, the fast response time (≈4 ms), and low detection limit (≈0.98 Pa) in diagnostic human healthcare monitoring, excellent healability, and reliable antibacterial performance.


Asunto(s)
Electrónica , Poliuretanos , Humanos , Reproducibilidad de los Resultados , Antibacterianos , Elastómeros
3.
ACS Appl Mater Interfaces ; 14(38): 43783-43791, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36112650

RESUMEN

Portable and wearable dual-mode sensors that can simultaneously detect multiple stimuli are essential for emerging artificial intelligence applications, and most efforts are devoted to exploring pressure-sensing devices. It is still challenging to integrate temperature and pressure-sensing functions into one sensor without the requirement for complex decoupling processes. Herein, we develop a self-powered and multifunctional dual-mode sensor by dip-coating melamine sponge with both poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and carboxylated single-walled carbon nanotubes (CNTs). By integrating thermoelectric and conductive PEDOT:PSS/CNT components with the hydrophilic and resilient porous sponge, the resultant sensor is efficient in independently detecting temperature and pressure changes. The temperature and pressure stimuli can be independently converted to voltage and electrical resistance signals on the basis of the Seebeck and piezoresistive effects, respectively. The sensor exhibits a high Seebeck coefficient of 35.9 µV K-1 with a minimum temperature detection limit of 0.4 K and a pressure sensitivity of -3.35% kPa-1 with a minimum pressure detection limit of 4 Pa. Interestingly, the sensor can also be self-powered upon illumination. These multi-functionalities make the sensor a promising tool for applications in electronic skin, soft robots, solar energy conversion, and personal health monitoring.

5.
ACS Nano ; 15(6): 9746-9758, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34080827

RESUMEN

Flexible, breathable, and degradable pressure sensors with excellent sensing performance are drawing tremendous attention for various practical applications in wearable artificial skins, healthcare monitoring, and artificial intelligence due to their flexibility, breathability, lightweight, decreased electronic rubbish, and environmentally friendly impact. However, traditional plastic or elastomer substrates with impermeability, uncomfortableness, mechanical mismatches, and nondegradability greatly restricted their practical applications. Therefore, the fabrication of such pressure sensors with high flexibility, facile degradability, and breathability is still a critical challenge and highly desired. Herein, we present a wearable, breathable, degradable, and highly sensitive MXene/protein nanocomposites-based pressure sensor. The fabricated MXene/protein-based pressure sensor is assembled from a breathable conductive MXene coated silk fibroin nanofiber (MXene-SF) membrane and a silk fibroin nanofiber membrane patterned with a MXene ink-printed (MXene ink-SF) interdigitated electrode, which can serve as the sensing layer and the electrode layer, respectively. The assembled pressure sensor exhibits a wide sensing range (up to 39.3 kPa), high sensitivity (298.4 kPa-1 for 1.4-15.7 kPa; 171.9 kPa-1 for 15.7-39.3 kPa), fast response/recovery time (7/16 ms), reliable breathability, excellent cycling stability over 10 000 cycles, good biocompatibility, and robust degradability. Furthermore, it shows great sensing performance in monitoring human psychological signals, acting as an artificial skin for the quantitative illustration of pressure distribution, and wireless biomonitoring in real time. Considering the biodegradable and breathable features, the sensor may become promising to find potential applications in smart electronic skins, human motion detection, disease diagnosis, and human-machine interaction.


Asunto(s)
Nanocompuestos , Dispositivos Electrónicos Vestibles , Inteligencia Artificial , Humanos , Solventes , Titanio
6.
ACS Nano ; 15(4): 7765-7773, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33769046

RESUMEN

Conductive hydrogels have emerged as promising material candidates for epidermal sensors due to their similarity to biological tissues, good wearability, and high accuracy of information acquisition. However, it is difficult to simultaneously achieve conductive hydrogel-based epidermal sensors with reliable healability for long-term usage, robust mechanical property, environmental degradability for decreased electronic waste, and sensing capability of the physiological stimuli and the electrophysiological signals. Herein, we propose the synthesis strategy of a multifunctional epidermal sensor based on the highly stretchable, self-healing, degradable, and biocompatible nanocomposite hydrogel, which is fabricated from the conformal coating of a MXene (Ti3C2Tx) network by the hydrogel polymer networks involving poly(acrylic acid) and amorphous calcium carbonate. The epidermal sensor can be employed to sensitively detect human motions with the fast response time (20 ms) and to serve as electronic skins for wirelessly monitoring the electrophysiological signals (such as the electromyogram and electrocardiogram signals). Meanwhile, the multifunctional epidermal sensor could be degraded in phosphate buffered saline solution, which could not cause any pollution to the environment. This line of research work sheds light on the fabrication of the healable, degradable, and electrophysiological signal-sensitive conductive hydrogel-based epidermal sensors with potential applications in human-machine interactions, healthy diagnosis, and smart robot prosthesis devices.


Asunto(s)
Hidrogeles , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Humanos , Nanogeles , Polímeros
7.
ACS Appl Mater Interfaces ; 12(30): 34226-34234, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32673490

RESUMEN

Over the past few years, wearable electronics and smart textiles have seen tremendous growth in both academia and industries. However, it is still a challenge to prepare robust, flexible, wearable, and multiresponsive textile electronics. A newly blooming two-dimensional (2D) transition-metal carbide/nitride (MXene) is regarded as an ideal active material to build multifunctional electronics due to its intriguing properties. Herein, a hydrophobic and multifunctional textile composite (Si-MAP) was prepared by decoration of conductive MXene nanosheets onto air-laid paper, followed by wrapping with poly(dimethylsiloxane) (PDMS). These obtained smart textiles exhibited excellent electronic/photonic/mechanical triresponsive properties: Si-MAPs could reach high equilibrium temperatures (104.9 and 118.7 °C) under quite low power illumination (1.25 W cm-2) and working voltage (4 V). The Si-MAP pressure sensor exhibited high sensitivity and rapid response time (30-40 ms), which can capture a wide range of human movements. Moreover, the thin PDMS layer not only rendered the textile composites hydrophobic but also improved the stability and adaptation for daily use. Remarkably, the hydrophobic Si-MAPs have maintained the advantages of breathability and washability, which make them suitable for wearing. Thus, this smart Si-MAP textile provides a reference for the study of the next generation of light, portable, and wearable textile-based electronic devices.


Asunto(s)
Movimiento , Textiles , Titanio/química , Dispositivos Electrónicos Vestibles , Dimetilpolisiloxanos/química , Humanos , Nanoestructuras/química , Conductividad Térmica
8.
Med Sci Monit ; 26: e918932, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32057034

RESUMEN

BACKGROUND Osteogenic differentiation of periodontal ligament stem cells (PDLSCs) is associated with periodontitis. It has been reported that long noncoding RNA X-inactive specific transcript (lncRNA XIST) is upregulated and microRNA-214-3p (miR-214-3p) is downregulated in PDLSCs after osteogenic induction. However, whether XIST is involved in osteogenic differentiation of PDLSCs via miR-214-3p has not been reported. MATERIAL AND METHODS The protein expressions of osteogenic markers alkaline phosphatase (ALP), osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2) were examined by Western blot. The levels of miR-214-3p and XIST were determined by qRT-PCR. The relationship between miR-214-3p and XIST was evaluated by luciferase reporter, RNA immunoprecipitation, and RNA pulldown assays. RESULTS We found that XIST was increased and miR-214-3p was decreased in PDLSCs after osteogenic stimulation. Silencing of XIST decreased the protein expressions of ALP, OCN, and RUNX2, and also decreased ALP activity. Higher miR-214-3p levels also inhibited osteogenic differentiation of PDLSCs. XIST interacted with miR-214-3p and depletion of miR-214-3p mitigated XIST absence-mediated suppression of osteogenic differentiation. CONCLUSIONS XIST participates in osteogenic differentiation of PDLSCs by sponging miR-214-3p.


Asunto(s)
MicroARNs/metabolismo , Osteogénesis/genética , Periodontitis/genética , ARN Largo no Codificante/metabolismo , Células Madre/patología , Adolescente , Diferenciación Celular/genética , Células Cultivadas , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , MicroARNs/agonistas , MicroARNs/antagonistas & inhibidores , Osteoblastos/patología , Ligamento Periodontal/citología , Ligamento Periodontal/patología , Periodontitis/patología , Cultivo Primario de Células , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba
9.
J Microbiol Biotechnol ; 30(3): 448-458, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-31752063

RESUMEN

We investigated the therapeutic effects of microRNA-139-5p in relation to osteoporosis of bone marrow-derived mesenchymal stem cell (BMSCs) and its underlying mechanisms. In this study we used a dexamethasone-induced in vivo model of osteoporosis and BMSCs were used for the in vitro model. Real-time quantitative polymerase chain reaction (RT-PCR) and gene chip were used to analyze the expression of microRNA-139-5p. In an osteoporosis rat model, the expression of microRNA-139-5p was increased, compared with normal group. Downregulation of microRNA-139-5p promotes cell proliferation and osteogenic differentiation in BMSCs. Especially, up-regulation of microRNA-139-5p reduced cell proliferation and osteogenic differentiation in BMSCs. Overexpression of miR-139-5p induced Wnt/ß-catenin and down-regulated NOTCH1 signaling in BMSCs. Down-regulation of miR-139-5p suppressed Wnt/ß-catenin and induced NOTCH1 signaling in BMSCs. The inhibition of NOTCH1 reduced the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Activation of Wnt/ß-catenin also inhibited the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Taken together, our results suggested that the inhibition of microRNA-139-5p promotes osteogenic differentiation of BMSCs via targeting Wnt/ß-catenin signaling pathway by NOTCH1.


Asunto(s)
Médula Ósea/metabolismo , MicroARNs/genética , Osteoporosis/metabolismo , Receptor Notch1/metabolismo , Vía de Señalización Wnt , Animales , Médula Ósea/patología , Células Cultivadas , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteogénesis , Osteoporosis/genética , Osteoporosis/patología , beta Catenina/metabolismo
10.
ACS Appl Mater Interfaces ; 11(50): 47358-47364, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31755694

RESUMEN

Wearable epidermal sensors are attracting growing interests in human activity monitoring and flexible touch display, but they are still limited by the poor self-healing property and the difficult dissolvable feature. Herein, we report polyvinyl alcohol (PVA)-stabilized liquid metal particles (LMPs) (PVA-LMPs) hydrogels with excellent self-healing performance and the dissolvable feature for wearable epidermal sensors, constructed by dispersing LMPs of eutectic gallium and indium into the borate-modified PVA polymer networks. Interestingly, the PVA-LMPs hydrogels exhibited excellent electrically and mechanically self-healing ability. Moreover, the PVA-LMPs hydrogel can be fabricated as epidermal sensors, which can accurately monitor the human activities. Additionally, the epidermal sensors are dissolvable, showing an attractive feature for on demand transient electronics. It is demonstrated that the hydroxyl groups of PVA can stabilize LMPs via hydrogen-bonding interactions. Furthermore, the dynamic cross-linking bonds between hydrogels and LMPs can rupture and coalesce reversibly in the hydrogel network, which endow the hydrogels with both electrically and mechanically self-healing ability. This work shows the potential of constructing next-generation multifunctional hydrogel-based epidermal sensors for human activity monitoring, wearable healthcare diagnosis, portable electronics, and robot tactile systems.

11.
Small ; 15(51): e1904293, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31647609

RESUMEN

2D transition-metal carbides and nitrides, named MXenes, are promising materials for energy storage, but suffer from aggregation and restacking of the 2D nanosheets, which limits their electrochemical performance. In order to overcome this problem and realize the full potential of MXene nanosheets, a 3D MXene foam with developed porous structure is established via a simple sulfur-template method, which is freestanding, flexible, and highly conductive, and can be directly used as the electrode in lithium-ion batteries. The 3D porous architecture of the MXene foam offers massive active sites to enhance the lithium storage capacity. Moreover, its foam structure facilitates electrolyte infiltration for fast Li+ transfer. As a result, this flexible 3D porous MXene foam exhibits significantly enhanced capacity of 455.5 mAh g-1 at 50 mA g-1 , excellent rate performance (101 mAh g-1 at 18 A g-1 ), and superior ultralong-term cycle stability (220 mAh g-1 at 1 A g-1 after 3500 cycles). This work not only demonstrates the great superiority of the 3D porous MXene foam but also proposes the sulfur-template method for controllable constructing of the 3D foam from 2D nanosheets at a relatively low temperature.

12.
ACS Appl Mater Interfaces ; 11(44): 41701-41709, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31625378

RESUMEN

Flexible wearable soft epidermal sensors assembled from conductive hydrogels have recently attracted tremendous research attention because of their extensive and significant applications in body-attachable healthcare monitoring, ultrasensitive electronic skins, and personal healthcare diagnosis. However, traditional conductive hydrogels inevitably face the challenge of long-term usage under room temperature and cold conditions, due to the lost water, elasticity, and conductivity at room temperature, and freezing at the water icing temperatures. It severely limits the applications in flexible electronics at room temperature or cold environment. Herein, we report a flexible, wearable, antifreezing, and healable epidermal sensor assembled from an antifreezing, long-lasting moist, and conductive organohydrogel. The nanocomposite organohydrogel is prepared from the conformal coating of functionalized reduced graphene oxide network by the hydrogel polymer networks consisting of poly(vinyl alcohol), phenylboronic acid grafted alginate, and polyacrylamide in the binary ethylene glycol (EG)/H2O solvent system. The obtained organohydrogel exhibits excellent temperature tolerance (-40 °C), long-lasting moisture (20 days), reliable self-healing ability, and can be assembled as wearable sensor for an accurate detection of both large and tiny human activities under extreme environment. Thus, it paves the way for the design of highly sensitive wearable epidermal sensors with reliable long-lasting moisture and excellent temperature tolerance for potential versatile applications in electronic skins, wearable healthcare monitoring, and human-machine interaction.

13.
ACS Appl Mater Interfaces ; 11(41): 38169-38176, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31552732

RESUMEN

Anisotropic composite films of polyaniline (PANI) with single-walled carbon nanotube (SWCNT) were prepared by in situ electropolymerization on highly oriented high-density polyethylene (HDPE) films. Polarized UV-vis and Raman spectra confirm the anisotropic arrangement of PANI molecular chains in the composite films. The conductivities of 16.6 ± 0.2 and 2.07 ± 0.2 S cm-1 have been obtained for doped PANI/0.8 wt % SWCNT measured along and perpendicular to the direction of the HDPE molecular chain, respectively. The response of PANI/0.8 wt % SWCNT films used as ammonia sensors is much higher along the chain direction of HDPE than that perpendicular to the chain direction of HDPE with an anisotropic ratio of 1.8 at 100 ppm ammonia. This is attributed to the well-ordered array of PANI/0.8 wt % SWCNT induced by the oriented HDPE films. Moreover, the high ammonia response for PANI/0.8 wt % SWCNT may be attributed to the charge-transfer effect between PANI and SWCNT.

14.
Nano Lett ; 19(2): 1143-1150, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30657695

RESUMEN

Flexible and degradable pressure sensors have received tremendous attention for potential use in transient electronic skins, flexible displays, and intelligent robotics due to their portability, real-time sensing performance, flexibility, and decreased electronic waste and environmental impact. However, it remains a critical challenge to simultaneously achieve a high sensitivity, broad sensing range (up to 30 kPa), fast response, long-term durability, and robust environmental degradability to achieve full-scale biomonitoring and decreased electronic waste. MXenes, which are two-dimensional layered structures with a large specific surface area and high conductivity, are widely employed in electrochemical energy devices. Here, we present a highly sensitive, flexible, and degradable pressure sensor fabricated by sandwiching porous MXene-impregnated tissue paper between a biodegradable polylactic acid (PLA) thin sheet and an interdigitated electrode-coated PLA thin sheet. The flexible pressure sensor exhibits high sensitivity with a low detection limit (10.2 Pa), broad range (up to 30 kPa), fast response (11 ms), low power consumption (10-8 W), great reproducibility over 10 000 cycles, and excellent degradability. It can also be used to predict the potential health status of patients and act as an electronic skin (E-skin) for mapping tactile stimuli, suggesting potential in personal healthcare monitoring, clinical diagnosis, and next-generation artificial skins.

15.
Nanomicro Lett ; 11(1): 72, 2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34138029

RESUMEN

As the rapid development of portable and wearable devices, different electromagnetic interference (EMI) shielding materials with high efficiency have been desired to eliminate the resulting radiation pollution. However, limited EMI shielding materials are successfully used in practical applications, due to the heavy thickness and absence of sufficient strength or flexibility. Herein, an ultrathin and flexible carbon nanotubes/MXene/cellulose nanofibrils composite paper with gradient and sandwich structure is constructed for EMI shielding application via a facile alternating vacuum-assisted filtration process. The composite paper exhibits outstanding mechanical properties with a tensile strength of 97.9 ± 5.0 MPa and a fracture strain of 4.6 ± 0.2%. Particularly, the paper shows a high electrical conductivity of 2506.6 S m-1 and EMI shielding effectiveness (EMI SE) of 38.4 dB due to the sandwich structure in improving EMI SE, and the gradient structure on regulating the contributions from reflection and absorption. This strategy is of great significance in fabricating ultrathin and flexible composite paper for highly efficient EMI shielding performance and in broadening the practical applications of MXene-based composite materials.

16.
J Mater Chem B ; 7(10): 1541-1562, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-32254901

RESUMEN

In recent decades, cellulose has been extensively investigated due to its favourable properties, such as hydrophilicity, low-cost, biodegradability, biocompatibility, and non-toxicity, which makes it a good feedstock for the synthesis of biocompatible hydrogels. The plentiful hydrophilic functional groups (such as hydroxyl, carboxyl, and aldehyde groups) in the backbone of cellulose and its derivatives can be used to prepare hydrogels easily with fascinating structures and properties, leading to burgeoning research interest in biomedical applications. This review focuses on state-of-the-art progress in cellulose-based hydrogels, which covers from their preparation methods (including chemical methods and physical methods) and physicochemical properties (such as stimuli-responsive properties, mechanical properties, and self-healing properties) to their biomedical applications, including drug delivery, tissue engineering, wound dressing, bioimaging, wearable sensors and so on. Moreover, the current challenges and future prospects for cellulose-based hydrogels in regard to their biomedical applications are also discussed at the end.


Asunto(s)
Tecnología Biomédica/métodos , Celulosa/química , Sistemas de Liberación de Medicamentos/métodos , Hidrogeles/química , Humanos
17.
Small ; 14(44): e1803018, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30247809

RESUMEN

Flexible wearable pressure sensors have drawn tremendous interest for various applications in wearable healthcare monitoring, disease diagnostics, and human-machine interaction. However, the limited sensing range (<10%), low sensing sensitivity at small strains, limited mechanical stability at high strains, and complicated fabrication process restrict the extensive applications of these sensors for ultrasensitive full-range healthcare monitoring. Herein, a flexible wearable pressure sensor is presented with a hierarchically microstructured framework combining microcrack and interlocking, bioinspired by the crack-shaped mechanosensory systems of spiders and the wing-locking sensing systems of beetles. The sensor exhibits wide full-range healthcare monitoring under strain deformations of 0.2-80%, fast response/recovery time (22 ms/20 ms), high sensitivity, the ultrasensitive loading sensing of a feather (25 mg), the potential to predict the health of patients with early-stage Parkinson's disease with the imitated static tremor, and excellent reproducibility over 10 000 cycles. Meanwhile, the sensor can be assembled as smart artificial electronic skins (E-skins) for simultaneously mapping the pressure distribution and shape of touching sensing. Furthermore, it can be attached onto the legs of a smart robot and coupled to a wireless transmitter for wirelessly monitoring human-motion interactivities.


Asunto(s)
Dispositivos Electrónicos Vestibles , Atención a la Salud/métodos , Grafito , Humanos
18.
Small ; 14(14): e1704497, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29484807

RESUMEN

The development of integrated high-performance supercapacitors with all-in-one configuration, excellent flexibility and autonomously intrinsic self-healability, and without the extra healable film layers, is still tremendously challenging. Compared to the sandwich-like laminated structures of supercapacitors with augmented interfacial contact resistance, the flexible healable integrated supercapacitor with all-in-one structure could theoretically improve their interfacial contact resistance and energy densities, simplify the tedious device assembly process, prolong the lifetime, and avoid the displacement and delamination of multilayered configurations under deformations. Herein, a flexible healable all-in-one configured supercapacitor with excellent flexibility and reliable self-healing ability by avoiding the extra healable film substrates and the postassembled sandwich-like laminated structures is developed. The healable all-in-one configured supercapacitor is prepared from in situ polymerization and deposition of nanocomposites electrode materials onto the two-sided faces of the self-healing hydrogel electrolyte separator. The self-healing hydrogel film is obtained from the physically crosslinked hydrogel with enormous hydrogen bonds, which can endow the healable capability through dynamic hydrogen bonding. The assembled all-in-one configured supercapacitor exhibits enhanced capacitive performance, good cycling stability, reliable self-healing capability, and excellent flexibility. It holds broad prospects for obtaining various flexible healable all-in-one configured supercapacitors for working as portable energy storage devices in wearable electronics.

19.
Sensors (Basel) ; 17(12)2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29257085

RESUMEN

Ultrasensitive room temperature real-time NO2 sensors are highly desirable due to potential threats on environmental security and personal respiratory. Traditional NO2 gas sensors with highly operated temperatures (200-600 °C) and limited reversibility are mainly constructed from semiconducting oxide-deposited ceramic tubes or inter-finger probes. Herein, we report the functionalized graphene network film sensors assembled on an electrospun three-dimensional (3D) nanonetwork skeleton for ultrasensitive NO2 sensing. The functional 3D scaffold was prepared by electrospinning interconnected polyacrylonitrile (PAN) nanofibers onto a nylon window screen to provide a 3D nanonetwork skeleton. Then, the sulfophenyl-functionalized reduced graphene oxide (SFRGO) was assembled on the electrospun 3D nanonetwork skeleton to form SFRGO network films. The assembled functionalized graphene network film sensors exhibit excellent NO2 sensing performance (10 ppb to 20 ppm) at room temperature, reliable reversibility, good selectivity, and better sensing cycle stability. These improvements can be ascribed to the functionalization of graphene with electron-withdrawing sulfophenyl groups, the high surface-to-volume ratio, and the effective sensing channels from SFRGO wrapping onto the interconnected 3D scaffold. The SFRGO network-sensing film has the advantages of simple preparation, low cost, good processability, and ultrasensitive NO2 sensing, all advantages that can be utilized for potential integration into smart windows and wearable electronic devices for real-time household gas sensors.

20.
Small ; 13(41)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28895272

RESUMEN

A stretchable, transparent, and body-attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS2 (PANI/MoS2 ) nanocomposite in MoS2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high-performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real-time monitoring of environment safety and human healthcare.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...